References
-
Borsboom, D., Mellenbergh, G. J., & Van Heerden, J. (2004). The concept of validity. Psychological Review, 111(4), 1061–1071.
-
Bollen, K. A. (1989). Structural equations with latent variables. New York, NY: Wiley.
-
Bollen, K. A. & Bauldry, S. (2011) Three Cs in measurement models: Causal indicators, composite indicators, and covariates. Psychological Methods, 16, 265–284.
-
Jöreskog, K. G., & Wold, H. (1982). The ML and PLS techniques for modeling with latent variables: Historical and comparative aspects. In H. Wold & K. G. Jöreskog (Eds.), Systems under indirect observation: Causality, structure, prediction, part I (pp. 263–270). Amsterdam, Netherlands: North Holland.
-
Rigdon, E. E. (2012). Rethinking partial least squares path modeling: In praise of simple methods. Long Range Planning, 45, 341–358.
-
Tenenhaus, M. (2008). Component-based structural equation modelling. Total Quality Management and Business Excellence, 19(7–8), 871–886.
-
Jöreskog, K. G. (1970). Estimation and testing of simplex models. British Journal of Mathematical and Statistical Psychology, 23, 121–145.
-
Bollen, K. A. (1996). An alternative two stage least squares (2SLS) estimator for latent variable equations. Psychometrika, 61, 109–121.
-
Bollen, K. A. (2019). Model implied instrumental variables (MIIVs): An alternative orientation to structural equation modeling. Multivariate Behavioral Research, 54, 31–46.
-
Dijkstra, T. K., & Henseler, J. (2015). Consistent partial least squares path modeling. MIS Quarterly, 39, 297–316.
-
Hwang, H., Takane, Y., & Jung, K. (2017). Generalized structured component analysis with uniqueness terms for accommodating measurement error. Frontiers in Psychology, 8, 2137.
-
Hwang, H., & Takane, Y. (2004). Generalized structured component analysis. Psychometrika, 69, 81–99.
-
Hwang, H., & Takane, Y. (2014). Generalized structured component analysis: A component-based approach to structural equation modeling. New York, NY: Chapman and Hall/CRC Press.
-
Lohmöller, J.-B. (1989). Latent variable path modeling with partial least squares. Heidelberg, Germany: Physica.
-
Wold, H. (1982). Soft modeling: The basic design and some extensions. In K. G. Jöreskog & H. Wold (Eds.), Systems under indirect observation: Causality, structure, prediction, part II (pp. 1–54). Amsterdam, Netherlands: North Holland.
-
Hair, J. F., & Sarstedt, M. (2019). Factors versus composites: Guidelines for choosing the right structural equation modeling method. Project Management Journal, 50, 619–624.
-
Rigdon, E. E., Sarstedt, M., & Ringle, C. M. (2017). On comparing results from CB-SEM and PLS-SEM: Five perspectives and five recommendations. Marketing ZFP, 39, 4–16.
-
Sarstedt, M., Hair, J. F., Ringle, C. M., Thiele, K. O., & Gudergan, S. P. (2016). Estimation issues with PLS and CBSEM: Where the bias lies! Journal of Business Research, 69, 3998–4010.
-
Cho, G., Hwang, H., Sarstedt, M., & Ringle, C. M. (2020). Cutoff criteria for overall model fit indexes in generalized structured component analysis. Journal of Marketing Analytics, 8, 189–202.
-
Cho, G., Jung, K., & Hwang, H. (2019). Out-of-bag prediction error: A cross validation index for generalized structured component analysis. Multivariate Behavioral Research, 54, 505–513.
-
Hair, J.F., Risher, J. J., Sarstedt, M., & Ringle, C.M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, Vol. 31 No. 1, pp. 2–24.
-
Sarstedt, M., Ringle, C.M., and Hair, J.F. (2017) Partial least squares structural equation modeling. In: C. Homburg, M. Klarmann, and A. Vomberg (eds.). Handbook of Market Research. Cham: Springer, Cham, pp. 1–40.
-
Hair, J.F., Hult, G.T.M., Ringle, C.M. and Sarstedt, M. (2021). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), 3rd ed., Thousand Oaks: Sage.
-
Cho, G., & Choi, J. Y. (2020). An empirical comparison of generalized structured component analysis and partial least squares path modeling under variance-based structural equation models. Behaviormetrika, 47, 243–272.
-
Hair, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., & Thiele, K. O. (2017). Mirror, mirror on the wall: a comparative evaluation of composite-based structural equation modeling methods. Journal of the Academy of Marketing Science, 45(5), 616–632.
-
Hwang, H., Cho, G., Jung, K., Falk, C., Flake, J., & Jin, M. (2021). An approach to structural equation modeling with both factors and components: Integrated generalized structured component analysis. Psychological Methods, 26(3), 273–294.